49

Total Synthesis of Astaxanthin and Hydroxyechinenone

By A. P. LEFTWICK and B. C. L. WEEDON

(Department of Chemistry, Queen Mary College, Mile End Road, London, E.1)

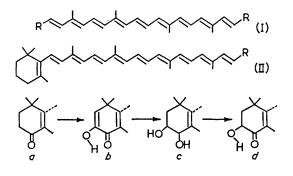
ASTAXANTHIN (I, R = d) occurs in *Crustacea* and other animals;^{1,2} together with its esters, it constitutes the principal prosthetic group of the carotenoproteins.^{1,3,4} Attempts to isolate astaxanthin frequently yield the corresponding diosphenol, astacene (I, R = b).¹ The latter may readily be obtained by autoxidation of canthaxanthin (I, R = a),^{5,6} for which a number of syntheses have been developed.⁷ We now report the conversion of astacene into astaxanthin by reduction with potassium borohydride, and oxidation of the resulting mixture of tetraols (I, R = c) with manganese dioxide or, preferably, 2,3-dichloro-5,6-dicyanoquinone.

The product, which exhibited a molecular ion† corresponding to $C_{40}H_{52}O_4$, was identified by direct comparison with an authentic specimen‡ from the common lobster, *Homarus gammarus* L. (mixed thin-layer chromatograms on Kieselgel H). Both had λ_{max} (CS₂) 503 m μ , λ_{max} (CHCl₃) 485 m μ , λ_{max} (MeOH) 472 m μ , ν_{max} (CHCl₃) 3520 and 1660 cm.⁻¹, τ (CDCl₃)* 8.74, 8.06, and 8.02, and yielded astacene on autoxidation.

Synthetic astaxanthin combined[‡] with the

† Precision mass spectrometry on an A.E.I. MS9 spectrometer with sample directly inserted into source (Dr. E. S. Waight).

* Methyl bands only.


 \ddagger The authors are indebted to Dr. D. F. Cheesman and Dr. P. F. Zagalsky for the authentic specimen of astaxanthin and for the conversion of synthetic astaxanthin into α -crustacyanin.

appropriate apoprotein from the lobster carapace to give the characteristic blue colour, λ_{max} (phosphate buffer, pH 7) 630 m μ , of α crustacvanin.4

Autoxidation of echinenone (II, R = a) gave 3-oxoechinenone (II, R = b).⁶ Reduction of the latter with potassium borohydride, and oxidation of the resulting glycols (II, R = c) with 2,3dichloro-5,6-dicyanoquinone or, preferably, acetone and aluminium t-butoxide, gave 3-hydroxyechinenone (II, R = d), m.p. (evac. capillary) 156-157°. This exhibited the expected spectral properties, λ_{max} (C₆H₆) 472 m μ , λ_{max} (CHCl₃) 472 m μ , λ_{max} (EtOH) 460 m μ , λ_{max} (petrol) 457 m μ , ν_{max} (CCl₄) 3520 and 1665 cm⁻¹, τ (CDCl₃)* 8.96, 8.74, 8.28, 8.06, and 8.02, and a molecular ion^{\dagger} corresponding to C₄₀H₅₄O₂.

A pigment in Adonis annua has been formulated

as (II, R = d);⁸ this structure has now been confirmed by mixed chromatograms¶ of the derived diosphenol with 3-oxoechinenone.

(Received, October 28th, 1966; Com. 835.)

¶ For which the authors thank Dr. K. Egger.
¹ P. Karrer and E. Jucker, "Carotenoids", Elsevier, New York, 1950.
² D. L. Fox and T. S. Hopkins, Comp. Biochem. Physiol., 1966, 17, 841; D. L. Fox, ibid., 1962, 6, 305.
³ D. F. Cheesman and J. Prebble, Comp. Biochem. Physiol., 1966, 17, 929.
⁴ D. F. Cheesman, P. F. Zagalsky, and H. J. Ceccaldi, Proc. Roy. Soc., 1966, B, 164, 130.
⁵ J. B. Davis and B. C. L. Weedon, Proc. Chem. Soc., 1960, 182.
⁶ Cf., B. C. L. Weedon in "Chemistry and Biochemistry of Plant Pigments", ed. T. W. Goodwin, Academic Press, ordera 1965. London, 1965.

- ⁷ Cf., M. Akhtar and B. C. L. Weedon, J. Chem. Soc., 1959, 4058.
- ⁸ K. Egger, Phytochemistry, 1965, 4, 609.